Transactional demand for CBDC*

Luca Nocciola European Central Bank

Alejandro Zamora-Pérez *European Central Bank*

26 September 2024 BoC– NY Fed – SNB – Queen's University workshop on the future of the monetary system

*The views expressed in this presentation are our own and do not necessarily reflect those of the European Central Bank or the Eurosystem.

Why we care

- Demand for cash for transactions is declining and payments are becoming increasingly digital
- Private digital assets may become the dominant medium of exchange (e.g., Libra), with consequences for monetary policy
- In reaction, central banks are thinking to introduce CBDCs
- Key question: is there any demand for CBDC for transactions?

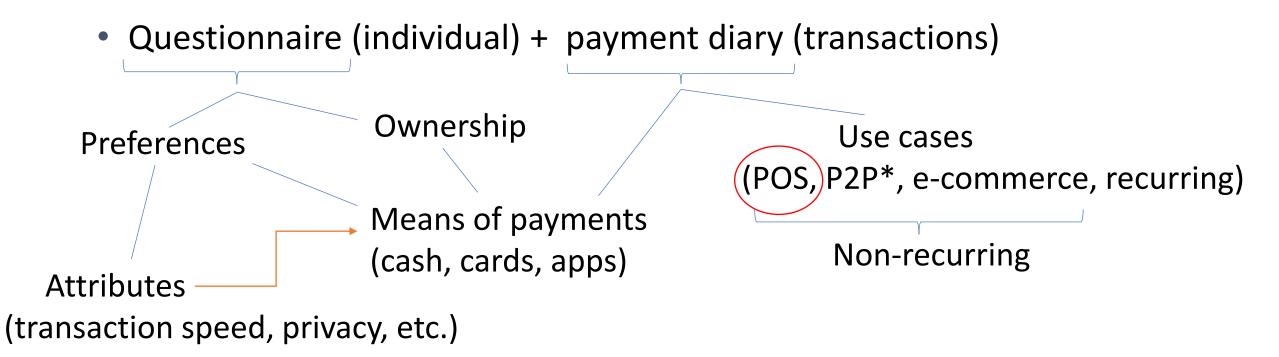
What we do

- We estimate transactional demand for CBDC at the point of sale (POS) against different CBDC designs
- We model user's choice in two stages, adoption and usage, and show that modelling adoption is critical to understanding demand

What we find

• Without appropriate policy, CBDC demand is contained, but optimal design, information campaigns and network effects can boost it

Literature (i) – big picture


- Challenge lies in striking the "right" balance between "too much" and "too little" demand for CBDC (Ahnert et al., IJCB 2022)
- Community researched extensively situations in which a CBDC may be "too popular", potentially undermining banks
- However, less research investigated whether there is sufficient interest in a CBDC as a regular means of payment
- Our work contributes to the latter strand

Literature (ii) - contribution

- We model demand for CBDC as a means of payment, decoupling transactional from store-of-value demand (vs Li, JME 2023)
- We extend existing models for means of payment' demand to include CBDC (vs Koulayev et al., RAND J 2016)
- We exploit data on mobile payment applications ("apps"), rather than cards, to model CBDC adoption (vs Huynh et al., BoC WP 2020)
- We show that, without appropriate policy, CBDC demand is limited, in line with observations (e.g., China), and provide a rationale for it
- We explore two drivers of the adoption cost, information frictions and gradual network effects, and show how to tackle them to boost adoption

Data

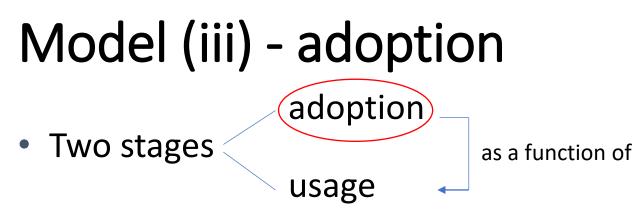
 Representative sample of ~ 40,000 individuals and ~ 100,000 transactions from the euro area over 2021-22

*P2P = Person-to-person = model

Model (i) – CBDC as a bundle of attributes

- Let $x_{i,j}$ be a set of attributes of instrument *j* (as perceived by user *i*)
 - acceptance, transaction speed, privacy, ease of use, settlement speed, logistical convenience, usefulness for budgeting
- We introduce a CBDC as a combination of attributes $x_{i,j}$ from different means of payment j

$$x_{i,CBDC} = \lambda' x_{i,card} + (1 - \lambda)' x_{i,cash}$$
$$\lambda \in [0,1]$$

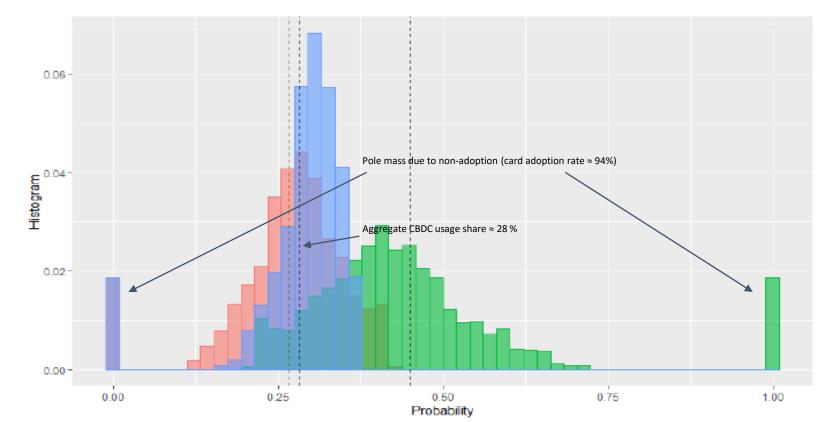

Model (ii) - usage • Two stages usage

- User *i* has (possibly) multiple means of payment (*j*) in her wallet
 - e.g., j e {cash, card, CBDC}

Assuming, for now, CBDC is adopted

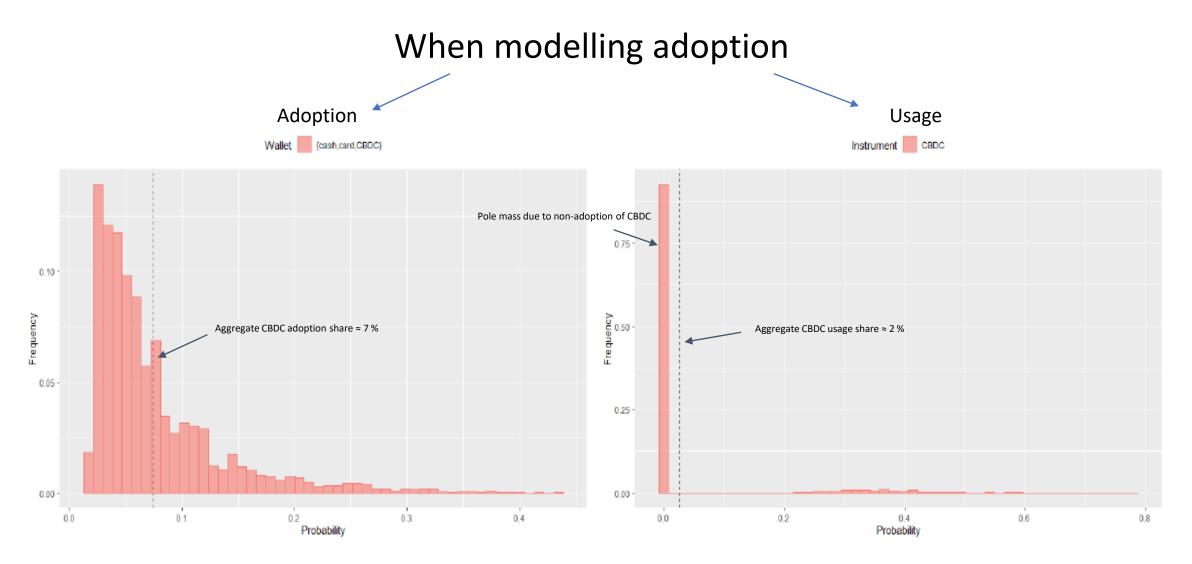
• Using means of payment j at POS yields utility $u_{i,j}$

• User *i* chooses (probabilistically) instrument *j* over *k* iff $u_{i,j} > u_{i,k}$

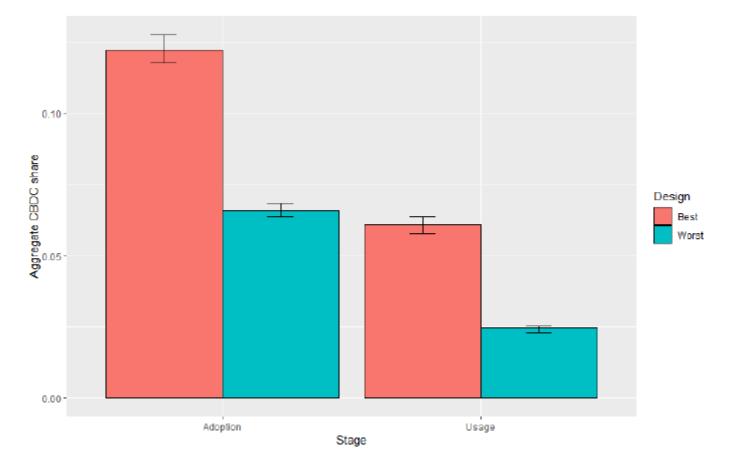

- User *i* faces a wallet expansion choice
 - $\{cash\} \rightarrow \{cash, card\} \rightarrow \{cash, card, CBDC\}$
- User *i* chooses wallet *b* via a cost-benefit analysis
- Expected* utility $u_{i,b}$ from adopting b• Adoption $\cot c_b$ from adopting b $\rightarrow \overline{u}_{i,b} = u_{i,b} - c_b + \overline{\varepsilon}_{i,b} \longrightarrow \text{randomness}$ $P_{i,b}(\overline{u}_{i,b} > \overline{u}_{i,b'}) = \frac{\exp(\overline{v}_{i,b})}{\sum_{b'} \exp(\overline{v}_{i,b'})}$
- User *i* chooses (probabilistically) wallet *b* over *b'* iff $\bar{u}_{i,b} > \bar{u}_{i,b'}$

*User *i* computes her expected utility she would get from hypothetically using a means of payment belonging to the adopted bundle

Results (i) – demand without policy


Without modelling adoption^{*}

Instrument Card Cash CBDC



* Hybrid design (card-like, λ =0.8). Exogenously conditioning on adoption. (Optimistic) assumption: users who adopt cards also adopt CBDC.

Results (ii) – demand without policy

Results (ii) – optimal design

Aggregate CBDC adoption and usage shares (y-axis) based on the best (red bars) and worst (blue bars) design scenario. The x-axis reports the stage: adoption and usage. The best design consists of an app-like CBDC for transaction speed, ease of use, safety and convenience, while it consists of a cash-like CBDC for acceptance, privacy, settlement speed and usefulness for budgeting. The worst design consists of the reverse.

Conclusion

- If CBDC is designed as a means of payment, it is relevant to analyse its demand as such
- Without appropriate policy, CBDC demand as a payment instrument is limited
- With appropriate policy, like optimal design, raising awareness and leveraging network effects, CBDC demand can be boosted
- Potential aggregate deposit outflows are probably overstated in the extant literature, at least in normal times

References

Ahnert, T. et al. (2023), "The economics of central bank digital currency", International Journal of Central Banking

Huynh, K. et al. (2020), "Demand for payment services and consumer welfare: the introduction of a central bank digital currency", *Bank of Canada Working Paper Series*

Koulayev, S. (2016), "Explaining adoption and use of payment instruments by US consumers", *Rand Journal of Economics*

Li, J. (2023), "Predicting the demand for central bank digital currency: A structural analysis with survey data", *Journal of Monetary Economics*