

What's at Stake? Competition in Crypto Staking

Jiageng Liu Igor Makarov Antoinette Schoar MIT Sloan LSE MIT Sloan, NBER

Bank of Canada

Ottawa, September 26, 2024

Motivation: Role of Staking

- Proof-of-Stake (PoS) emerged as the main alternative to the PoW consensus mechanism to secure transactions in blockchain networks
- Validators create new blocks and validate transactions on the ledger
- Validators with larger stakes have a higher probability to be selected
- Validators earn rewards for their work and share them with their delegators
- Token holders (delegators) select a small number of trusted parties (validators) by staking their tokens

This Paper

- How efficient is the staking market?
 - How do delegators choose validators? How do validators set fees?
 - Capital allocation has implications for the efficient provision of validation services: Can more efficient validators enter? Do inefficient ones get penalized?
- Validators act as intermediaries. Many parallels to the mutual fund and money market fund industries
- Big picture question for financial intermediation
 - Pricing strategies and equilibrium outcomes in the presence of returns to scale and investor inertia

Why Cardano?

- One of the oldest and largest PoS blockchains
- Active delegation market: 5K validators and 1.6M delegators
- Unlike Ethereum and Solana, all data are recorded on the blockchain
- Rich setting
 - Built-in increasing and decreasing returns to scale
 - Observe individual delegator behavior not only aggregate flows
 - Several protocol changes serve as exogenous shocks to the system

Main Results

- Delegators on average choose validators who offer higher returns, but there is heterogeneity in return-sensitivity of delegators
 - Larger delegators tend to switch validators more frequently
 - There are active and "sleepy" delegators
- Validators set fees taking into account delegator composition and differences in scale economies
 - Larger validators who benefit from increasing returns to scale charge higher fees
 - Validators with a higher share of sleepy delegators charge higher fees
 - Speed with which validators respond to exogenous protocol changes depends on their fraction of sleepy investors

Roadmap

- How rewards are determined and shared between delegators and validators
- How delegators choose validators
- How validators set their fees

Validator Reward

- Validator's reward depends on
 - 1. Validator's total stake (s)
 - 2. Validator's own stakes (v)
 - 3. Validator's block production quality (q)
- Validator's quality is not directly observed but can be estimated

Validator Reward (Cont.)

- Rewards increase in total stake up to a cap ($\bar{s} = \$34M$)
- The validator's stake gets a higher reward than a delegator's stake
- Validators with a total stake above the cap earn a lower reward per unit of stake (decreasing returns to scale)

Delegator Rewards

- Validators charge a mandatory fixed fee (c) and a discretionary margin fee (τ), and distribute the rest to delegators
- For each dollar staked, delegators receive

$$\frac{(1-\tau_{it})(R_{it}-c)}{s_{it}} = (1-\tau_{it}) \left(R_t q_{it} \frac{f(s_{it}, v_{it})}{s_{it}} - \frac{c}{s_{it}} \right)$$

Delegator Rewards (Cont.)

• Delegators' return is hump-shaped in total stake

Liu, Makarov and Schoar, What's at Stake? Competition in Crypto Staking

Delegators

Liu, Makarov and Schoar, What's at Stake? Competition in Crypto Staking

Delegator Mobility (1)

• Each year, 20% of delegators, who hold 50% of the staked capital, switch their validators

Delegator Mobility (2)

Delegators on average choose validators who offer higher returns

Determinants of Delegator Mobility

- Delegators are more likely to switch validators if
 - they have a larger stake
 - they have switched before
 - · their current stake is with a low expected return validator

	Full sample	First half	Second half
log(stake)	0.171***	0.178***	0.185***
	(0.001)	(0.001)	(0.001)
Age on chain	-0.082***	-0.107***	-0.075***
	(0.000)	(0.000)	(0.000)
Switched before	1.291***	1.259***	1.427***
	(0.003)	(0.004)	(0.005)
Return shortfall	28.805***	24.234***	39.311***
	(0.116)	(0.140)	(0.205)
Intercept	-4.305***	-4.257***	-5.479***
	(0.008)	(0.009)	(0.013)
Time FE	\checkmark	\checkmark	√
Ν	22118771	8263542	13855229
Pseudo R ²	0.141	0.101	0.117

Active vs Sleepy Delegators

• Delegators are heterogeneous in their switching rate

Active vs Sleepy Delegators Across Validators

• Heterogeneity in the switching rate of delegators is also observed at the validator level

Validators

Liu, Makarov and Schoar, What's at Stake? Competition in Crypto Staking

Validator Competition

- Validators compete by setting the margin fee au
 - Higher fee delivers a higher payoff but may drive delegators away

Hypotheses

- H1: Larger validators charge higher fees
- H2: Validators with more "sleepy" delegators charge higher fees

Fee Changes

• To stay competitive, validators change their fees according to the shifting market conditions

Fee Changes: Event Study

Validators cut (raise) fees when delegators are leaving (joining)

Fees and Validator Characteristics

Panel regression of fees on the size and predicted switch rate

	Full sample	First half	Second half
Predicted switch rate	-0.059***	-0.064***	-0.105***
	(0.003)	(0.006)	(0.008)
Adjusted stake	6.335***	6.684***	5.299***
	(0.248)	(0.381)	(0.339)
Intercept	-0.004***	-0.003***	-0.003***
	(0.000)	(0.000)	(0.000)
Time FE	√	\checkmark	\checkmark
R ²	0.050	0.065	0.047
Ν	19126	7748	11678

 $\tau_{it} = \beta_0 + \beta_1 \widehat{sw}_{it} + \beta_2 f(s_{it}, v_{it})$

• Endogeneity concern: active delegators choose better validators, rather than validators exploiting sleepy delegators

How do Validators Reset Fees?

- A: validators set margin fees optimally when they change them
- Same regression but on the sample when the change happened

$$\tau_{it} = \beta_0 + \beta_1 \widehat{sw}_{it} + \beta_2 f(s_{it}, v_{it})$$

	Margin fee
Predicted switch rate	-0.0535***
	(0.0159)
Adjusted stake	2.874**
	(1.150)
Intercept	-0.006***
	(0.001)
Time FE	√
R ²	0.044

Protocol-wide Shock to Fixed Fee

- In October 2023, all validators are allowed to set a lower fixed fee
- We fit the Cox's PH model on the fee reset timing
- The active delegator share strongly predicts fee reset

	Fixed fee reset propensity	
	Cox Coefficient	
Predicted switch rate	24.658***	
	(6.150)	
Adjusted stake	3.451	
	(2.708)	
Margin fee	-36.819***	
	(8.213)	
Has changed margin	0.308*	
	(0.186)	

Conclusion

- Delegators on average choose validators who offer higher returns
- But large differences in the likelihood of switching, which is also observed at the validator level
- Validators set fees taking into account delegator composition and differences in scale economies
 - Larger validators which benefit from scale economies and validators with a higher share of "sleepy" delegators charge higher fees