Strategic Money and Credit Ledgers

Markus Brunnermeier, Jonathan Payne Princeton University

Bank of Canada Conference 2024

27th September 2024

Introduction

- * Long standing interest in creating a system of "bills-of-exchange":
 - * Firms issue IOUs to purchase inputs that are repaid when firm sells outputs.
 - * The IOUs can be re-traded and used as a medium-of-exchange.
 - \star Benefits: provides uncollateralized credit to firms and makes productive assets liquid.
- ★ Long-standing practical challenges:
 - * Need to ensure enforcement of uncollateralized IOUs.
 - \star Need IOUs to be effective currency (medium of exchange, unit of account, store of value).
- * Theory: frictionless public record keeping on a ledger allows trade with IOUs. [Aiyagari and Wallace, 1991], [Kocherlakota, 1998]
- \star Practical solution: Amazon "backs" a ledger where agents write and exchange IOUs.

This Paper: Trading Platform Backs a System of Tradable IOUs

- * Platform controls a trading tech. and centralized, record keeping device (= ledger).
- * Q. Can the platform set up a system of uncollateralized IOUs? Yes.
 - \star Agents trading on platform must pay using ledger, where IOUs are automatically settled.
 - \star Agents trading off-platform cannot make cash trades because agent no longer store cash.
- \star Q. Will the platform set it up? *Maybe*. Only if they control large share of trade.
- * Q. Can other arrangements work? Not as successfully. Because:
 - \star Stand alone ledger (e.g. Etherium) cannot incentivize agents to use the ledger.
 - \star Banks can only exclude agents from future lending; cannot exclude from future trade.
 - * Industry supply chain cannot offer IOUs denominated in consumption basket.
- * Q. Policy maker concerns? Yes? Platform rents; loss of control; "black" market.

Literature Review

* Ledgers, contracting, and settlement assets

Aiyagari and Wallace (1991), Freeman (1996a, 1996b), Kocherlakota (1998), Kahn and van Oordt (2022).

* This paper: large, private, profit maximizing institution controls ledger.

★ Digital Currencies and currency competition

Svensson (1985), Gans and Halaburda (2015), Catalini and Gans (2018), Chiu and Wong (2020), Fernadez-Villaverde (2018), Cong, Li & Wang (2019); Rogoff & You (2019); Chiu et al. (2019); Benigno et al. (2019); Brunnermeier et al. (2020), Piazzesi et al. (2019); Keister & Sanches (2020); Uhlig (2019), Kahn et al. (2019), Hayek (1976); Kareken & Wallace (1981); Brunnermeier & Sannikov (2018), Lagos et al. (2019, 2020), and Chiu et al. (2019)

* This paper: centralized, private digital currencies provided by trading platforms.

* Platforms

Diamond & Maskin (1979), Rochet & Tirole (2002, 03, 06), Spulber (1999, 2018)

* This paper: integrates monetary economics with platform economics

This paper attempts to bring together money theory with IO

Table of Contents

Real Two Period Model

Monetary Macroeconomic Mode

Conclusion

Environment

- \star Two periods. Storable input good and collection of perishable output goods.
- \star Two types of agents: lenders and producers.
- $\star t = 0$: (construction of projects)
 - * Each lender is endowed with an input good.
 - * Each producer can use 1 input good to start a project (but has no input good).
- \star t = 1: (production and consumption)
 - * Each producer's project pays z > 1 output goods.
 - * Agents get linear utility from consuming other agents' input and output goods.

First best: Planner reallocates:

- * Input goods from lenders to producers so they can start projects.
- * Output goods across agents so they can consume.

Information and Enforcement Frictions

- * **F1.** Agents have public identities but their actions are private.
- * **F2.** Agents cannot commit.
- * **F3.** No public legal system (or an imperfect system) for contract enforcement.
- $\star\,\Rightarrow$ Producers cannot issue IOUs privately to lenders because they will not be repaid

Q: Can we introduce a privately controlled recording keeping system (i.e. a "ledger") and get IOUs issuance and first best production in a market economy?

Two Market Economies

1. Economy with a independent privately operated ledger.

2. Economy with a tech platform controlling the ledger.

Market Economy 1: Trading and Record Keeping

- \star Independent, privately operated ledger that records & executes trades & contracts.
- * Two payment options at t=1:
 - * Spot payments (s) are not recorded and are settled immediately,
 - * Output goods must be paid using input goods (no "double coincidence of wants")
 - * No input good market at t = 1 so producers must hold input goods in advance.
 - * Centralized payment (1) on a ledger.
 - * Agents can use certain future revenue on the ledger to pay for goods.
 - * So no "resource-in-advance" constraint.
- * Producers can issue IOUs on the ledger:
 - * Promise $R \geq 1$ goods at t = 1 for each input good given at t = 0.
 - * Ledger automatically uses revenue from ledger trades to settle contracts
 - * But revenue from spot trades cannot be used.

Market Economy 1: Timeline

$$t = 0$$

t = 1

- ★ Lenders endowed with input goods
 - \star Chooses to trade inputs for IOUs
- * Producers issue IOUs and choose to:
 - * Use inputs to produce output, or
 - * Store input goods (to default).

- * Agents meet randomly and swap goods (i.e. terms-of-trade of 1-1).
 - * If spot payment, then goods are exchanged immediately.
 - * If ledger payment, then the goods are given to the ledger.
- * Agents ask ledger to redeem IOUs.
- * Ledger settlement (if possible) & consumption occurs.

Market Economy 1: Equilibrium

Result: In equilibrium, no agents accept IOUs and no production takes place. Why?

- * If other agents are producing, then it is optimal for an agent to:
 - * Store input goods,
 - * Purchase output goods using unrecorded spot trade, and
 - ★ Default.
- ★ Relative to [Kocherlakota, 1998]:
 - \star The ledger in our environment has competition from another payment technology,
 - \star So, the economy needs an institution to incentivize the use of the ledger.

Introducing an independent "unbacked" common ledger does not expand contracting.

Market Economy 2: Platform Controlling Trading Technology

- ★ Same environment as before but with trading frictions.
- * There are now two trading technologies for connecting goods traders:
 - * Open public marketplace (o).
 - * Private platform (p) that is controlled by profit maximising operator.
 - * Agents find platform trades with probability η (and marketplace trades with 1η) (Endogenized in the monetary dynamic model.)
- * Platform provides the trading technology and the settlement ledger:
 - \star Forces agents using the platform to make payments using their ledger
 - \star Charges markup μ when agents trade on the platform

Market Economy 2: Timeline

$$t = 0$$

t = 1

- ★ Lenders endowed with input goods
 - \star Chooses to trade inputs for IOUs
- * Producers choose whether to:
 - * Use inputs to produce output, or
 - * Store input goods (to default).

- * Fraction η find trades on platform and so must trade through ledger:
 - \star Ledger takes resources to settle IOUs.
 - * Producer gets $(1 \mu)(z R)$
 - ★ Buyers with input goods get 0.
- * Fraction 1η find trades off-platform:
 - ★ If find buyer with input goods, then spot trade and default.
 - * Otherwise, must use ledger.
- * Agents redeem any IOUs they have and ledger settlement occurs.

Market Economy 2: Equilibrium

Result:

(i) For sufficiently large η , the platform constructs the ledger and sets the maximum markups that are incentive compatible with no default and first best production:

$$\mu \le \frac{1}{z-1} \left(1 - \frac{z}{\eta} \right) =: \bar{\mu}$$

- * Why? Platform penalizes agents attempting to trade using input goods.
- $\star\,$ So, agents don't store input goods and producers cannot do spot side trades.
- (ii) For low η , the platform does not set up a ledger to enforce contracts.
 - * Why? Platform subsidy needed to make platform exclusion incentivize no-default.

Only a dominant trading platform will set up the ledger and expand contracting.

Other Potential Ledger Providers?

- * Q. Can a traditional bank provide a ledger with uncollateralized loans?
 - * Not in our environment because the only possible threat is exclusion from trade.
 - \star If repeated borrowing, then exclusion from future credit can incentivize repayment.
 - \star But in this case, banks, platforms, or any other lender can incentivize repayment.
- * Q. Can an industrial supply chain (e.g. automotive industry) provide a ledger?
 - \star Our platform provides trading technology for all consumer goods so it can exclude agents from consuming a broad basket.
 - \star Industrial supply only concerns only a subsets of goods (e.g. everything related to cars)
 - \Rightarrow IOUs are not denominated in overall consumption basket.
 - \Rightarrow "Exchange rate risk" when IOUs repay (e.g. in cars).

Table of Contents

Real Two Period Mode

 ${\bf Monetary\ Macroeconomic\ Model}$

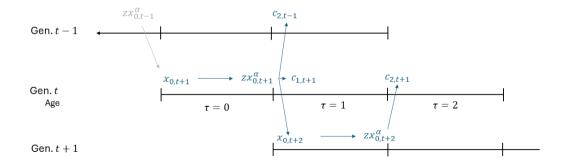
Conclusion

Environment Changes

- * Goal: understand the macro implications of using the IOUs as "currency".
- * Changes to the model:
 - * Introduce settlement using currency, (government cash in spot trades, IOUs on ledger) Why? Introduce secondary market for IOUs and endogenous terms-of-trade.
 - * Move to an infinite horizon OLG model.

 Why? So currency is valued and we can discuss dynamic feedback.
 - \star Allow agents to choose where to trade, (endogenous η) Why? Endogenize platform ability to "back" ledger through trading advantage.
 - * Introduce saving into financial intermediaries ("funds"), Why? To get aggregation and explore exclusion from financial markets
 - * Introduce flexible project size, Why? Mark-ups distorts production level
 - * Allow other platforms to provide ledgers. Why? To consider regulated competition.

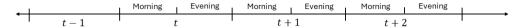
Environment Changes: Demographics

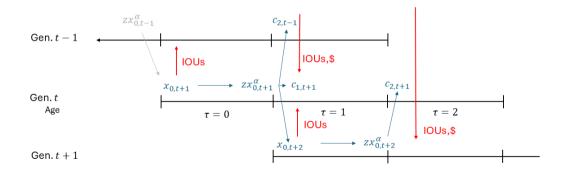

- * Discrete time, infinite horizon, OLG model with one consumption good.
- * Agents start as **producers** then become **log-utility consumers**:
 - * Age 0: born without resources but with technology: x_t goods $\mapsto y_{t+1} = zx_t^{\alpha}$ goods
 - \star Age 1: produce and sell their goods, consume, repay or default on IOUs, and save.
 - ★ Age 2: consume and exit
- * Each age, agents choose trading technology $n \in \{o \text{ (open market) }, p \text{ (platform)}\}$
 - \star Get i.i.d. extreme value "search" amenity from trading on n:

$$\zeta_{\tau}^{ni} \sim \underbrace{Gu(1/\gamma_{\tau}, \cdot)}_{\text{Agent specific}} + \underbrace{\log(\zeta^{n})}_{\text{Technology specific}}, \quad i \in [0, 1]$$

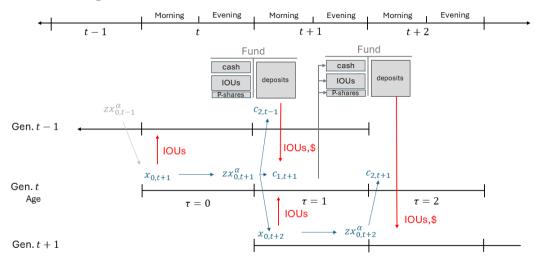
 \star So γ_{τ} is the elasticity of substitution at age τ and ζ^{n} is technology trading advantage.

OLG: Production and Goods Flow

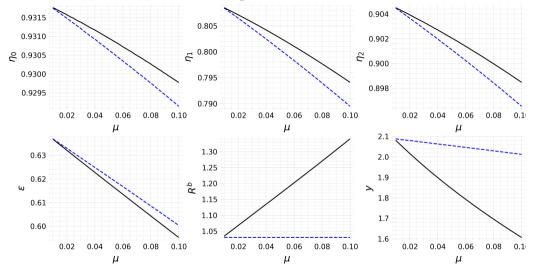




Environment Changes: Currencies


- * Government now supplies money, \bar{M}_t , to the economy.
- * The two payment technologies now settle using financial assets:
 - * Spot transactions have a resource-in-advance constraint:
 - \star Fraction κ of payment must be made using public money and/or barter. ("cash-goods")
 - * The digital ledger has **no** resource-in-advance **constraint**:
 - $\star\,$ agents pay on ledger using tokenized claims to any non-risky future income on the ledger.
 - ★ ("Ledger-IOUs", "credit-goods" or digital "bills-of-exchange")
- \star $\epsilon_t = \epsilon_t^o/\epsilon_t^p$ is price on marketplace dividend price on platform (real exchange rate)
- * Continuum of competitive mutual funds that pool resources across agents:
 - * Issue deposits, make loans, hold money reserves, and hold platform equity.
 - * Funds excluding defaulting agents have access to the platform and ledger.
 - * Funds accepting defaulting agents are blocked from the ledger.

OLG: Payments Flow



OLG: Adding Funds

Equilibrium for Different Markup Policies

Black is general equilibrium. Blue is partial equilibrium with fixed interest rate. Other variables are z = 1, $\alpha = 0.45$, $\beta = 0.9$, $\gamma_1 = 1.9$, $\gamma_2 = 1.5$, $\zeta = 1.0$, and $\kappa = 0.1$.

Platform Problem

The platform chooses a sequence μ to maximise their equity price by solving problem:

$$q_0^s = \max_{\mu} \left\{ \sum_{t=0}^{\infty} \xi_{0,t} \pi_t^s \right\}$$
 s.t. Agent choices, Equilibrium prices,

where $\xi_{0,t} = \prod_{j=0}^{t} (R_{j,j+1})^{-1}$ is the household SDF.

Cash Marketplace Disciplines Platform Markups if γ_2 is High.

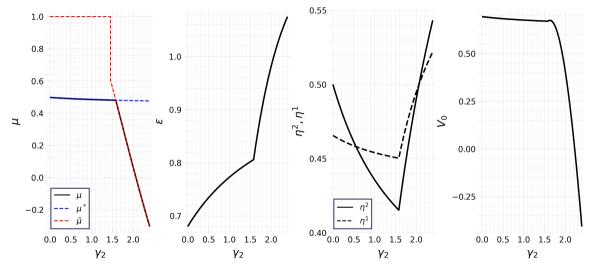


Figure: Steady state solution to platform problem for $\gamma_2 \in [0, 2]$.

Additional Lessons From The Macroeconomic Version

- 1. General equilibrium interest rate movements "lock-in" agents
 - * High markups encourage agents to trade on the public marketplace.
 - \star This increases demand for cash, which limits loan supply and increases the interest rate.
 - \star The higher interest rate increases the opportunity cost of holding cash and so partially offsets the markup disincentive to trade through the platform.
- 2. Having an unmonitored money storage technology disrupts the ledger system:
 - * Without cash, producers only ever receive IOUs as payment,
 - * And so they can never escape the ledger and default.
- 3. Public option (e.g. CBDC or broad FedNow) impact depends upon implementation:
 - * If the government creates a forced tender ledger, that must be used for all payments, then all contracts are enforced (recovers Kocherlakota (1998))
 - * If the government allows the platform to choose any payment technology, then the platform may respond by setting up its own token for hidden/defaulting trades.

Conclusion and Policy Takeaways

- * Dominant platform will provide a ledger and "back" a system of tradable IOUs.
- * Coordinates lenders not to accept agents who defaulted on other lenders
- * Cash-public market may provide too much or too little competition.
- * Lock-in effect simplifies enforcement but increases rent extraction
- \star Public option (e.g. \mathbf{CBDC} or \mathbf{broad} $\mathbf{FedNow})$ impact depends on implementation

References I

Aiyagari, S. R. and Wallace, N. (1991).

Existence of steady states with positive consumption in the kiyotaki-wright model.

Kocherlakota, N. R. (1998).

Money is memory.

journal of economic theory, 81(2):232-251.