Intro 00000 **Nodel**

Equilibria

Self-Regulation

Essentiality 0 Conclusion

Stablecoin Self-Regulation

Francesca Carapella ¹

¹Federal Reserve Board

September 27th, 2024

The Future of the Monetary System workshop

Bank of Canada

 $^{^1}$ The opinions are the author's and do not necessarily reflect those of the Federal Reserve Board or its staff

Equilibria 000

Conclusion

Fix ideas

- Stablecoins are crypto assets that peg their value to a reference asset (e.g. the USD)
- Stablecoins differ in their stabilization mechanisms:
 - collateralized (USD Coin, Tether...)
 - uncollateralized/algorithmic (Terra Classic USD...)
- Consider USD Coin (USDC):
 - "USDC is always redeemable 1:1 for US dollars"
 - ▶ i.e. issuer (Circle) has an obligation towards USDC investors

Goal of the paper

- Study the fragility of stablecoins (SC) issuers, who
 - 1. are subject to limited commitment to honor obligations
 - 2. coexist with issuers of other forms of debt (trad banks)
- Proposals reducing issuers' incentives to default on obligations
 - Segregated: a mechanism for each Institution
 - Two essential elements absent in current legislative initiatives
 - $\blacktriangleright\,$ These elements $\sim\,$ CCPs risk management: Fund & Margins
 - Merged: same mechanism for issuers with same Activity
 - Analyze spillovers to traditional banks
 - Cross subsidization by banks to SC issuers

Motivation: why do we care

- SC grew in mkt cap (to \$160bn) and turnover in 2020-2024
- \blacktriangleright SC issuers perform liquidity transformation \sim banks
 - similarly fragile if won't maintain reserves to honor redemptions
- Policy makers' concern about their fragility and impact on the economy and traditional financial mkts
 - fear of CP fire sales during USDT (Tether) depeg (May 2022)
 runs: USDC (Circle) depeg during SVB crisis (March 2023)
- Policy proposals in the US ranged from requiring SC issuers to hold a banking license to making them subsidiaries of insured depository institutions but without access to FDIC

Equilibria 000

Motivation: incentive to honor redemptions is key

- SC issuers have tried to self-regulate or tie their hands by relying on other institutions for safekeeping
 - For example, Circle:
 - holds reserves in BlackRock, BoNY Mellon, with regular attestations of reserves covering circulating USDC
 - is regulated as a licensed money transmitter under US state law, with financial statements audited annually
- because SC issuers are not trusted to repay/redeem

₩

Model: Lack of commitment/strategic default on obligations

Economic mechanism

- Key friction:
 - lack commitment to maintain reserves to honor redemptions
 - $\ensuremath{\mathsf{absconding}}\xspace/diverting assets, modeled as default on obligations$
 - applies to both Trad banks and SC issuers

Equilibria

- Key difference:
 - probability that default/diverting assets goes undetected
 ~ disclosure requirements, supervision
 - SC issuers can more easily default without being caught
 - self-regulation proposal takes this as given and designs a framework to reduce issuers' incentives to default/divert assets

Model: New Monetarist, as in Carapella-Williamson (2015)

- ▶ Time is discrete and infinite, 2 subperiods: *CM*, *DM*
- > 2 Sectors: crypto (c) and traditional (t)
- 3 types of consumption goods
 - ▶ in *CM*: *X_t*, perishable (settlement good)
 - ▶ in *DM*: x_t^i , i = c, t, perishable (consumption/investment good)
- 2 types of agents in each sector:
 - issuers (buyers) and investors (sellers)
 - continuum [0, 1] each
 - infinitely lived

ntro 00000

Self-Regulation

Essentiality 0 Conclusion

Model

► Issuer *i*:

Model

0000

• can produce CM-good X_t using labor H_t

wants to consume in CM and DM

$$E_0 \sum_{t=0}^{\infty} \beta^t [X_t - H_t + u(x_t^i)]$$

Investor i:

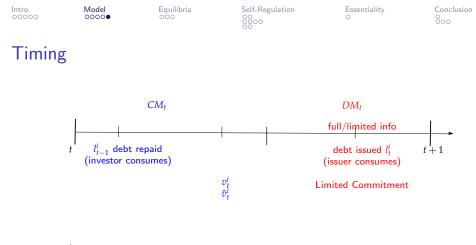
• can produce DM-good x_t^i using labor h_t

wants to consume in CM

$$E_0 \sum_{t=0}^{\infty} \beta^t [X_t - h_t]$$

Equilibria 000 Self-Regulation

Essentiality 0 Conclusion


Trade in DM

- In each sector: an issuer is randomly matched with an investor
- Motive for trade:
 - temporal mismatch in production and consumption/investment
- Trading friction 1: endogenous limited commitment
 - after consumption/investment no commitment to produce
 - non-storable consumption good
- Trading friction 2: limited access to information

Trading friction 2: limited access to information

- ► *DM* trade and *CM* default are publicly recorded
- ▶ investor in *DM* may not have access to the public record
 - ▶ a fraction ρ^i of DM meetings is *limited information*
 - ▶ a fraction $1 \rho^i$ of DM meetings is *full information*
 - ρ^c > ρ^t: SC disclosure requirements are nonexistent so they can get away more often or can hide more info
- Interpretation of limited information:
 - attestations not being released yet, or not reliable enough

- l_tⁱ: debt issued by issuer to investor in DM
- v_t^i : value of a repaying issuer at the end of CM (\sim deposit franchise to the issuer)
- \$\hat{v}_t^i\$: value of a defaulting issuer at the end of CM (~ possibly losing franchise)

Equilibria ●00

Essentiality 0 Conclusion

Decision problem with symmetric strategies

- ▶ Full/limited info matters only for \hat{v} but $x_F^i = x_L^i$
- Issuers make TIOLI offer to investors:

$$\begin{aligned} v_t^i &= \max_{\{x_t^i, l_t^i, H_{t+1}\}} & u(x_t^i) - \beta H_{t+1} + \beta v_{t+1}^i \\ s.t. & x_t^i \leq l_t^i \\ & l_t^i \leq \beta H_{t+1} \\ & \beta H_{t+1} \leq \beta (v_{t+1}^i - \hat{v}_{t+1}^i) \end{aligned}$$

$$egin{aligned} v_t^i &= \max_{\{x_t^i\}} & u(x_t^i) - x_t^i + eta v_{t+1}^i \ s.t. & x_t^i \leq eta(v_{t+1}^i - \hat{v}_{t+1}^i) \end{aligned}$$

Equilibria ○●○ Self-Regulation

Conclusion

Punishments and Equilibria

Symmetric stationary equilibria: xⁱ, vⁱ, ôⁱ
 such that all issuers choose xⁱ and have value vⁱ or ôⁱ

Off-equilibrium-path payoffs key for DM investment

 \blacktriangleright defaulter punished \Rightarrow if detected $\hat{v}^i=0,$ if undetected $\hat{v}^i\geq 0$

Self-Regulation

Conclusion

Symmetric stationary equilibria

In limited info meetings (w.p. $ho^i)$ defaulting issuers can issue debt

► Value of defaulting issuer at end of *CM*: $\hat{v}^i = \frac{\rho^i u(x^i)}{1-\beta}$

- Incentive constraint is slack $\Rightarrow x^i = x^*$ (first best)
- ► Incentive constraint binds $\Rightarrow x^i = \beta(v^i \hat{v}^i) < x^*$, and solves:

$$x^i = \beta(1 - \rho^i)u(x^i)$$

higher ρⁱ (crypto sector) ⇒ lower xⁱ if IC binds
IC binds in a larger set of economies (ie x* > β(1 − ρⁱ)u(x*)) $\hat{v}^i > 0$ IFF xⁱ > 0

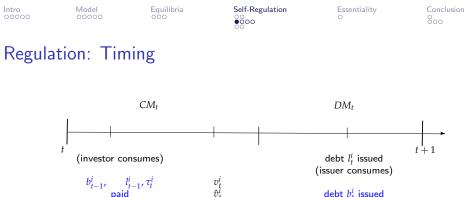
Self-Regulation

Incentive compatible mechanism has two essential components:

- 1. **voluntary** contribution to a mutualization fund in the CM: au_t^i
 - any payment to mechanism s.t. the same IC as private agents
 survivors' pay rule
- 2. sells 1-period membership titles B_t^i at price q_t^i in CM
 - membership title entitles the issuer to issue 1 unit of debt to be repaid by the mechanism (~ insured debt)
 - i.e. B_t^i paid by *all* members of the mechanism

Resource constraint:

$$\tau_t^i + q_t^i B_t^i = B_{t-1}^i$$



Segregated vs Merged

- Segregated: separate mechanisms for SC issuers and banks
 - similar mechanisms but separate mutualization schemes and markets for membership titles

•
$$\tau_t^i, B_t^i, q_t^i$$
 for $i = c, t$

- Merged: pool SC issuers with banks
 - one mutualization scheme for traditional and crypto sector
 - trad and crypto sector buy membership titles in same mkt
 - same τ_t, B_t, q_t for i = c, t

debt b_t^i issued

 \triangleright l_t^i : debt issued by issuer to investor in DM \blacktriangleright b_t^i : insured debt issued by issuer to investor in DM \succ τ_t^i : voluntary lump sum contribution levied on issuers \triangleright B_t^i : membership titles supplied by the mechanism with mechanism resource constraint $\tau_t^i = B_{t-1}^i - q_t^i B_t^i$

Equilibria 000

Essentiality

Conclusion

Segregated mechanism

The decision problem of issuer of type i = c, t is:

$$\begin{aligned} v^{i} &= \max_{\{x^{i}, b^{i}, l^{i}\}} \left\{ -q^{i}b^{i} + u\left(x^{i}\right) - l^{i} - \beta\tau^{i} + \beta v^{i} \right\} \\ &x^{i} \leq l^{i} + \beta b^{i} \\ &l^{i} + \beta\tau^{i} \leq \beta\left(v^{i} - \hat{v}^{i}\right) \end{aligned}$$

with mechanism resource constraint

$$\tau^i = B^i (1 - q^i)$$

and

$$\hat{v}^{i} = \max\left(0, \frac{-q^{i}b^{i} + \rho^{i}u\left(x^{i}\right)}{1 - \beta}\right)$$

Essentiality 0

Segregated mechanism: Equilibrium with IC binding $\hat{v} > 0$ exists IFF

a.
$$x^* > \beta (1 - \rho^i) u (x^*) + \beta^2 B^i u'(x^*)$$

with x_E^i solving this at =, vs $x_E^i = \beta (1 - \rho^i) u (x_E^i)$
b. $q^i b^i = \beta u'(x_E^i) B^i < \rho^i u (x_E^i)$

• x_E^i larger than no regulation and increases in B^i

$\underline{\hat{v}} = 0$ exists IFF

c. $x^* > \beta u(x^*)$

with x_E^i solving this at =

d.
$$q^i b^i = \beta u'(x_E^i) B^i \ge \rho^i u\left(x_E^i\right)$$

▶ x_E^i larger than no regulation and than with $\hat{v} > 0$ (x_E^i from a.)

Essentiality 0

Conclusion

Intuition

Segregated mechanism improves over no regulation:

Bⁱ spread cost of default on defaulters imitating non-defaulters

 $\blacktriangleright \quad \tau^i_t = B^i_{t-1} - q^i_t B^i_t$

• B^i can push value of default to 0: $\hat{v}^i = \max(0, \frac{-q^i B^i + \rho^i u(x^i)}{1-\beta})$

τⁱ provides guarantee of payment to SC investors (SC are *liquid*, which benefits issuers who can sell more SC)
 ⇒ issuers have more *skin in the game*

 \blacktriangleright τ^i and B^i :

> are both essential, not present in current initiatives

> are similar to CCPs clearing: *default fund, initial margin*

Conclusion

Merged Regulation

Decision problem of issuer i = c, t is

$$v^{i} = \max \left\{ -qb^{i} + u\left(x^{i}\right) - l^{i} - \beta\tau + \beta v^{i} \right\}$$
$$x^{i} \leq l^{i} + \beta b^{i}$$
$$l^{i} + \beta\tau \leq \beta \left(v^{i} - \hat{v}^{i}\right)$$

with $\hat{v}^i = \max\left(0, \frac{-qb^i + \rho^i u(x^i)}{1-\beta}\right)$, mechanism resource constraint:

$$\tau = \frac{B}{2} \left(1 - q \right)$$

and market clearing for membership titles:

$$B = b^c + b^t.$$

Equilibrium with both IC bind and $\hat{v}^i > 0$ for all i

FOC for
$$b^i$$
: $b^i > 0 \Rightarrow q = \beta u'(x^i)$

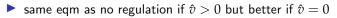
• Both types get the same allocation x_E , solving:

$$x_E = \beta \left(1 - \frac{\rho^j}{2} - \frac{\rho^i}{2} \right) u \left(x_E \right) + \beta^2 \frac{B}{2} u' \left(x_E \right)$$

 \Rightarrow spillovers:

1. $x_E^t > x_E > x_E^c$, with x_E^i from segregated mechanism

2. But $b^c > \frac{B}{2} > b^t$ as they finance the same x_E differently:


$$\beta b^{i} = x_{E} + \beta \frac{B}{2} (1-q) - \beta \left(1-\rho^{i}\right) u (x_{E})$$

t type pushed partially out of the mutualization fund and into issuing uninsured debt, as it subsidizes c type

Why are τ^i , b^i essential elements of the mechanism?

- 1. Essentiality of loss mutualization fund
 - ▶ \exists eqm with q = 1 and IC binding if
 - $\rho > \sigma$ (i.e.~ incentive problem severe enough) • $B = (\rho - \sigma)u(\beta^{1/\sigma}) > 0$
 - ▶ $\Rightarrow \tau = (1 q)B = 0$, in all other cases $\tau > 0$ essential
- 2. Essentiality of revenue raising membership titles
 - titles' effect on \hat{v}^i only but NOT on τ
 - a. title as fixed entry cost
 - b. title as marginal cost per unit of debt

Hence, IC relaxed via two separate channels: τ and $\hat{v}!$

Conclusion

This paper:

- proposes a mechanism to incentivize debt issuers to honor their obligations, with two essential elements:
 - 1. loss mutualization fund with **voluntary** contributions
 - 2. costly titles to membership of the fund \Rightarrow similar to CCP loss allocation waterfall
 - analyzes its effectiveness when heterogeneous issuers are subject to *merged* regulation (\sim *by activity*)
 - improves over no regulation for all issuers
 - reduces welfare for banks over a segregated mechanism
 - tilts banks debt issuance towards uninsured deposits

Segregated mechanism: Equilibrium with IC slack

 $\underline{\hat{v}} > 0$ exists IFF

- 1. $x^* \leq \beta (1 \rho^i) u(x^*) + \beta^2 B^i u'(x^*)$ vs $x^* \leq \beta (1 \rho^i) u(x^*)$ 2. $q^i b^i = \beta B^i < \rho^i u(x^*)$
- set of economies with IC slack larger than no regulation

 $\underline{\hat{v}} = 0$ exists IFF

- 3. $x^* \leq \beta u(x^*)$
- 4. $q^{i}b^{i} = \beta B^{i} \ge \rho^{i}u(x^{*})$
- \blacktriangleright set of economies with IC slack larger than no regulation and than with $\hat{v}>0$

Merged mechanism: both IC bind and $\hat{v}^i = 0$ for all i

• Both types get the same allocation x_E , solving:

$$x_E = \beta u (x_E)$$

Eqm exists IFF

$$x^* > \beta u(x^*)$$

• and, for $\hat{v}^i = 0$:

$$qb^{i} = \beta b^{i}u'(x_{E}) \geq \rho^{i}u(x_{E})$$

▶ x_E same as with segregated regulation, but set of economies with $\hat{v} = 0$ in equilibrium is (weakly) smaller, as the portfolio allocation doesn't matter: $b^i|_{MR} \leq B^i|_{SR}$

Equilil 000

Merged mechanism: at least one IC slack

- One IC slack = segregated (no) regulation for binding (slack)
- Both IC slack:
 - $\hat{v} = 0$: equivalent to segregated regulation
 - $\blacktriangleright \hat{v} > 0:$
 - $> x^* \beta b^i + \beta \frac{B}{2} (1 \beta) \le \beta (1 \rho^i) u (x^*)$

where x_E solves this at =

• $\rho^{i}u(x^{*}) > \beta b^{i}$ b^{i} increasing in $\rho^{i} \Rightarrow$ relative to segregated regulation larger set of economies with IC slack for c, smaller for t

• $\hat{v}^i > 0, \hat{v}^j = 0$: same qualitative conclusion as when $\hat{v} > 0$